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ABSTRACT

While it has generally been stated that lithium-drifted germanium

detectors must be operated at liquid-nitrogen temperature for optimum

performance, no systematic investigation to prove or disprove this state-

ment has been reported. The closest experiment is that of Tavendale who,

however, only investigated the resolution as a function of temperature for

one low-energy gainma ray.

The resolution and efficiency of two lithium-drifted germanium

detectors, approximately 20-mm diameter and 3-w& thickness, were studied

in the temperature range from 85 to l6o K., using gamma-ray sources

whose energies varied from 279 to 1352 kev.

It was found that, contrary to the results of Tavendale, the

resolution of the detectors had a pronounced peak at about 105°K. The

origin of this peak is not known, but is not due to changes in diode

capacitance or leakage current. The efficiency of the diodes is approx-

imately constant for each energy over the temperature range.
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CHAPTER I

INTRODUCTION

In I960, Pell1'2 produced the first lithium-drifted (p-i-n) diodes

with deep intrinsic sensitive layers, and suggested their use as detectors

for high-energy electrons and gamma rays. In 1962, Freck and Wakefield3

reported on a small lithium-drifted germanium detector that was 1.5 cm.2 x

1.5 mm. deep and had a 3-2 per cent resolution for the 662-keV. gamma

rays from 137Cs. The first high-resolution lithium-drifted germanium

gamma-ray spectrometer was used by Webb and Williams4 in 1963. Their

detector was 0.5 cm.2 x 5 i™« deep and had a resolution of 1 per cent for

the 137Cs gamma rays. Shortly after this, Tavendale5 produced germanium

detectors up to 2.5 cm.2 in area by 8-mm. deep with resolutions of 0.62

per cent at 662 keV.

The potentialities of the lithium-drifted germanium gamma-ray

detectors have been demonstrated and discussed by Ewan and Tavendale?"12

Since the detector efficiency increases with sensitive volume, and higher

efficiencies are desirable for many applications, scientists are working

actively on increasing the sensitive volume without degrading the resolu-

tion of the detector. As a good step toward this goal, Tavendale12 has

produced a lithium-drifted germanium detector with l6-cm.3 sensitive

volume using the "coaxial drift technique" instead of the planar drift

technique.

The production of a (p-i-n) lithium-drifted diode begins with a

slab of p-type material (silicon or germanium). A layer of metallic



lithium is deposited on one side of this slab, forming an n -type layer

and thus a diode. A reverse bias is applied for a period of time at an

elevated temperature. Lithium diffuses into the slab under the influence

of the applied field., producing a region of intrinsic-type material. The

drift process is stopped before the compensated region extends throughout

the slab, leaving a p-type layer at the back of the detector.

A diode of this type may be used as a gamma-ray detector. The

gamma rays interact with the detector material by one of three types of

processes : the photoelectric effect, Compton scattering, and pair pro-

duction. The electrons produced in these processes cause electron hole

pairs which are collected by applying an electric field across the detector.

Photoelectric absorption produces a peak in the pulse-height spectrum

corresponding to the full energy of the gamma ray. Compton scattering

produces a continuous distribution in the pulse-height spectrum but, if

the scattered gamma ray is absorbed before it can escape, the Compton

event can also contribute to the full energy peak. At gamma-ray energies

above 1.022 MeV., gamma-ray absorption by the pair production process

becomes increasingly important. In pair production, the photon is

completely absorbed and in its place appears a positron-negatron pair.

In pair production, the energy spent by the pair in the crystal is equal

to E - 2m C3 (where m C2 = 0.511 MeV. is the electronic rest energy).

A peak will be observed at a pulse amplitude corresponding to this energy

if both annihilation quanta escape from the crystal. Those pairs for

which one quantum is absorbed give rise to a peak at E - m C2. If both

quanta are captured, a contribution to the photopeak at the full energy

E is obtained.



The cross section of gamma-ray absorption by the photoelectric

effect, Compton scattering, and pair production is proportional to Z5 ,

Z, and Z2 , respectively, so a material of high Z is desirable. Hence,

germanium (Z = J2 ) is better than silicon (Z = 1^) as a gamma-ray detector.

Also, the energy required to produce an electron hole pair in germanium

is considerably lower than that for silicon; thus, statistical broadening

will have less effect in germanium than in silicon. Further, germanium

detectors have a faster rise time than silicon detectors because of their

higher charge -carrier mobility. Silicon detectors have the advantage that

they can be operated at room temperature in many applications, whereas

germanium detectors must be operated at low temperatures. However, for

high resolution applications silicon detectors must also be cooled, so

this advantage is more apparent than real.

The temperature characteristics of lithium-drifted germanium

gamma-ray detectors have received, as yet, little detailed experimental

study. McKenzie and Bromely,13' 14 who used gold -germanium p-n junctions

for the detection of charged particles in 1959.> reported that germanium

diodes must be operated near liquid -nitrogen temperature because, at

higher temperatures, thermal generation of carriers produces excessive

noise. However, they were not primarily interested in studying the

temperature effect on the detector.

In 196̂ , Ewan and Tavendale10 used a. lithium-drifted germanium

detector of l8-mm. diameter and 3. 5 -mm. depletion depth to study the

resolution of the 122-keV. gamma-ray peak from 57Co, as well as the

detector leakage current, as a function of temperature at constant bias



voltage. They reported that at low temperatures the preamplifier noise

is the limiting factor on resolution, and above 170 K. the detector

leakage current limits the resolution. They added that the detector can

be used at temperatures up to 150 K. without degradation of resolution.

Since lithium-drifted germanium detectors are coming into wider

use in gamma-ray spectroscopy because of their high-energy resolution,

since it is known that they must be cooled, and since comprehensive data

on the temperature dependence of their response were not available, it

was decided to study in detail the effect of temperature on the resolution

for these detectors.



CHAPTER II

EXPERIMENTAL EQUIPMENT

A cryostat for lithium-drifted germanium gamma-ray detectors was

designed and constructed such that the temperature of the diode can be

varied. This is accomplished by changing the gas pressure in a vacuum

jacket surrounding the diodes.

Figure 1 shows a detailed cross section of the cryostat. The

canned diode is mounted on the end of a cold finger, which is- a 21-in.-

long hollow copper cylinder whose outer diameter is 1 in. and whose

inner diameter is 0.5 in. The end opposite the diode is joined at right

angles to a solid copper rod, l6.5 in. long and 1 in. in diameter. This

rod is immersed in liquid nitrogen, thus cooling the detector by conduc-

tion through the hollow cylinder.

A vacuum jacket surrounds the cold finger in order to isolate it

from external heat sources. This jacket is made of a 19-7/l6-in.-

long stainless steel cylinder which has a 2-in. outer diameter and

1.875-in. inner diameter. This shell also carries ports for mounting

vacuum gauges, and connects to a gas cylinder through a palladium leak

valve. The pressure within the jacket is controlled by the speed of

the pumping system and the setting of this valve. The front end of

the shell is closed tightly with a removable aluminum can that is

5.656 in. long and has a 1.5-in. outer diameter. The wall thickness

of the can head, which faces the diode, is O.OJ1 in. This removable

can is required to reach the diode for removal or replacement. The hollow

5
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Fig. 1. A detailed cross section of the cryostat for lithium-
drifted germanium gamma-ray detectors.



cylinder of the cold finger is supported in the shell by stainless steel

spiders which prevent the cylinder from bending, yet minimize heat con-

duction from the shell to the cold finger.

The vacuum system is shown in Figure 2. It consists of a diffusion

pump (CVC Consolidated Vacuum Corporation, Type VMF-ll), a fore pump

(W. M. Welch Manufacturing Company, Type 1402B), a cold trap, and a

bleeder valve. In order to reduce pressure fluctuations inside the

cryostat, the latter is evacuated through a ballast tank. The volume of

this tank is approximately equal to that of the space inside the cryostat

(166 in.3).

An ionization vacuum gauge (Central Electronic, Type VglA/2) and

a thermocouple gauge (Hasting-Raydist, Inc., Type DV-6M) are mounted on

the ballast tank. The ionization gauge current is read with a Consolidated

Electrodynamic Corporation, Type DPA-28 ionization vacuum gauge meter.

The thermocouple gauge current is read with a Hasting Gauge, Type VT-6B.

Chromel-alumel thermocouples are used for the temperature measure-

ments. The cold junction of such a thermocouple is soldered to a lead

ring of 0.25-in. width and 0.025-in. thickness which fits tightly on the

diode can. The contacting ring is made of lead since lead is a good

thermal conductor and its expansion coefficient is greater than that of

aluminum; hence, when the can is cooled, the lead ring shrinks faster and

holds the aluminum can tightly. The thermocouple runs parallel to the

hollow copper cylinder and emerges from the vacuum jacket at the end

opposite the diode. The emf. induced in the thermocouple is recorded with

a Minneapolis-Honeywell Multipoint Recorder.
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Two lithium-drifted germanium diodes vere used in this experiment.

The two diodes are designated SG-3 and SG-1. Each diode is 19-5 nun. in

diameter. The diode SG-3 has a depletion depth of 3-5 iron- and SG-1 has

one of 3-0 M"1- The "two diodes were cut from a p-type germanium crystal

which was doped with gallium and has a resistivity in the range 31-39 ohm-

cm. This crystal was grown in the (l.l.l) orientation. It has a disloca-

tion density in the range 1900-2000/cm.3 and a carrier life-time of

*
400 |j,sec.

Each diode is mounted inside an aluminum can having a length of

0.78 in., an outer diameter of 0.88 in., and a wall thickness of 0.025 in.

The detector is pushed against the can head by a spring which also serves

as the electrical contact between the diode and an electric connector

which is mounted at the center of a copper disk. This copper disk seals

the diode can. It is cold welded to a lip on the can and to a similar

lip on an aluminum skirt. This skirt fits tightly on the cold finger

such that very good thermal contact between the diode can and the cold

finger is obtained. The diode can is vacuum tight in order to avoid

problems of diode surface contamination.

Detector signals are brought out of the cryostat by the use of a

O.ij-15-in.-o.d. thin-walled stainless steel tubing coaxial line. The

center conducting wire is 0.002-in.-diameter stainless steel. It is

held in position by an epoxy seal at one end of the stainless steel tube

Specification supplied by the manufacturer, Sylvania Electric
Products, Inc.
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and a glass disk at the other end facing the diode. The coaxial line is

2̂ .5 in. long and is filled with plastic foam beads. These minimize

noise that may arise from mechanical vibrations of the center wire, and

prevent the line from acting as a proportional counter. At the same time

the plastic has a reasonable dielectric constant so that the coaxial line

still has a low capacitance (9 pf-)- The coaxial line is shown in

Figure 3> and a block diagram of the electronic system is shown in

Figure k.

A low-noise charge-sensitive preamplifier (Q2069C-3 ) designed by

J. L. Blankenship15' 1S to accept and amplify the output of solid state

detectors was used in the experiment. It is mounted on a flange at the

end of the coaxial line. Figure 5 shows a circuit diagram of the pre-

amplifier.

The output of the preamplifier is fed to the input of a Q2069C-1

linear amplifier, also designed by J. L. Blankenship. The amplifier

chassis contains the main amplifier, a post amplifier with adjustable

bias, a test pulser, and power supplies. The main amplifier is a broad-

band feedback-stabilized amplifier with a gain of 200 and a six-position

attenuator on the input. The post amplifier has a gain of 2., k, or 8 and

includes an adjustable bias of 0 to 100 volts. The post amplifier may

be switched into or out of the system. A circuit diagram of the amplifier

system is shown in Figure 6.

The amplifier has two output terminals. One is connected to a

single-channel analyzer and the other to a ^OO-channel analyzer (RIDL, Inc.

Model 3̂ -12). The single-channel analyzer is adjusted to discriminate



11

0030-in Ni WIRE

CEROSEAL

KI rxx
t,

24 V2 in

' X

>^j yff I'fffr'VrKXXJ U

°°°oJC° .-

O O

O o

o o

0 ft

0 O

o
o 0

0 3

d o
o

0 0

o _^_

o o

° 0
0 3 „

0 o
0

o

0 °

o
3 0

9

° o

0

o o

^
0 0

0

o '

3 t

0 ° 0

0 °

0 »

[rp^p^jo [

4~
60-40 SOLDER

— 0.415-m 00
STAINLESS

EXPANDED POLYSTYRENE
BEADS

0.002-in STAINLESS
WIRE

CEROSEAL -0030-m Ni WIRE

Fig. 3- The coaxial line.



12

DIODE
LINEAR

AMPLIFIER
SINGLE-CHANNEL

ANALYZER

— 1
400-CHANNEL

ANALYZER

SCALER
NO 2

SCALER
NO. 3

NUMBER
OF EVENTS

TOTAL
COUNTS

OVERFLOW
COUNTS

Fig. k. A block diagram of the electronic system.



THIS DCSI6U BASED OH G)-eo69 0£S16U

coMuecT/ous
HSAR V/EWO C HCATEK SUPPLY

Cn 1
MS-3IOSA-ZO- tS

To Prsemp

LINEAR AMPLIFIER

/ 4O3B -L M £nck$on, pte/e 9OV', screen 3OV
4O33 -Western £/ectnc, ptete i£OV, semen G5V
Should be of fP type electrolytic.

5e* hss secf/ons 5<S? £

FOR

ALPHA ANALYSIS
CIRCUIT

INSTRUMENTATION AND CONTROLS DMSION

OAK RIDGE NATIONAL LABORATORYresistors cyroon £fif, S7a fjrcepf <tj noted
i Cer-Ccramtc.

UMON CAR9IDC NUCUW COUPNtr

Q-2O69C-/**

Fig. 6. The circuit diagram of the (Q2069C-1) amplifier.

. / \v^



TEST IN
SM i0AX AMPH. ZI-SS8

I Adjust 3N/SCT on Q-fOSSC-l until p,n 3
on If 2 1 is 85- 100 volts

2 VAM '- YAM1STORS

3 All resistors + vatt except as noted

Copj Fornlsteil TIS

031. _J-_&£/.

LIUEA8 AMPL/F/eR FOR ALPHA ANALYSIS

PREAMP COR SILICON DIODE

RADIATION DETECTORS
CIRCUIT

INSTRUMENTATION AND CONTR01S DmSON

OAK RIDGE NATIONAL LABORATORY

UMON CAgsroe NUCLEAB COMPHMT
f~TJi,cl

8
6 Sf/,/ tv? CrC-£S-//OS(*33 Dr,ll)

Fig. 5. The circuit diagram of the (Q2069C-J) preamplifier.



15

against electrical noise. The UOO-channel analyzer is triggered by the

output pulses of the single-channel analyzer. The ^00-channel analyzer " •»

input, address overflow, and stored pulses are counted with sealers

(Computer Measurements Company, Model 121FA-6*4-62 sealers).

The diode bias voltage is furnished by a stabilized power supply

(John Fluke Manufacturing Company, Inc., Model



CHAPTER III

TEMPERATURE CONTROL AND MEASUREMENTS

Two chromel-alumel thermocouples designated A and B were cali-

brated against a standard platinum resistance thermometer. Calibration

points "between 273°K. and liquid-nitrogen temperature (77-3 K. ) were

taken. These calibration points are given in Table 1. The accuracy of

calibration is within ±0.05 K.

After the thermocouple had been calibrated at a number of points,

the next requirement was a convenient means of obtaining corresponding

values of emf. and temperature at other points. The wide separation of

the last two calibration points (170.58°K. and 77-3 K.) makes interpola-

tion in this range subject to large error. Interpolation between the

calibration points is achieved more accurately by relating these points

to an arbitrary reference table which closely approximates the temperature-

emf relation of the couple. This method of interpolation is explained as

follows:

A table prepared by the National Bureau of Standards for a standard

chromel-alumel thermocouple17 is chosen as the reference table. This table

gives the thermocouple-induced emf. at different temperatures in the range

from 1 K. to 280°K. in steps of one degree. For each calibration point

the value of the induced emf. is translated into temperature by using the

reference table. The difference between the temperature value obtained

from the reference table and the one indicated by the platinum resistance

thermometer is evaluated for each calibration point. This difference is

16
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TABLE I

THE RELATION BETWEEN THE TEMPERATURE INDICATED WITH THE PLATINUM
RESISTANCE THERMOMETER AND THE CORRESPONDING emf.

INDUCED IN THE THERMOCOUPLES A AND B

Thermocouple A

Temperature indicated by platinum
resistance thermometer

°K Induced emf. in mV.

272.99

263.2ti.

241.87

218. k6

192.26

170.58

77-3

Thermocouple B

272.99

263.22

241.89

218.47

192.25

170.58

77.3

-0.0100

-0.3954
-1.2164

-2.0760

-2.9775

-3.6669

-5.8938

-0.0098

-0.3960

-1.2157

-2.0747

-2.9762

-3.6652

-5.8945
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plotted against the value of the thermocouple-induced emf. The maximum

difference to be plotted is only a few degrees. Thus a smooth curve of

the temperature difference versus emf. values can easily be plotted, and

interpolated values can be obtained accurately in the following manner:

For a certain value of emf. induced in the thermocouple one finds the

corresponding temperature by using the reference table. From the dif-

ference curve one finds the difference between the temperature obtained

from the reference table at that emf. value and the temperature which

would be given by the standard platinum resistance thermometer. Now

having the value of temperature from the reference table and its corre-

sponding correction factor, one can find the value that would be indicated

with the platinum resistance thermometer. The difference curves for

thermocouples A and B are shown in Figures 7 an(i 8, respectively.

A subsidiary experiment was performed to determine the relation of

the pressure in the cryostat jacket to the temperature of the detector.

For this purpose the cold junction of thermocouple A is pushed to the

center of a p-type germanium crystal (not a diode) which has the same

dimensions as an actual detector and is canned in a similar manner. This

thermocouple is held tightly at the copper disk, then passes through the

disk, through the hollow copper cylinder of the cold finger, and out of

the vacuum jacket. The cold junction of thermocouple B is soldered to

a lead ring as described previously.
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The average length of the thermocouple wires used is 35 in. Each

thermocouple is provided with chromel-alumel extension wires. Each wire

of a reference junction together with a copper wire is placed in a pool of

mercury at the bottom of a glass tube. The mercury forms the connection

between the two wires. The glass tubes are placed in an ice bath to a

depth of about k in. The spaces between ice particles are filled with

water, thus eliminating air pockets. The ice extends all the way to the

bottom of the container. The copper leads are connected to the measuring

instruments.

After evacuating the system to a reasonable extent (of the order

of 10~4 mm. mercury), the solid rod of the cold finger is immersed in a

dewar filled with liquid nitrogen. When the steady state of lowest

pressure and temperature is obtained, the temperature and the pressure

are measured. The palladium filter is then electrically heated, thus

permitting deuterium gas to flow into the system. The system pressure

results from the balance between the pumping speed and the leak rate.

When a steady state is again obtained, the pressure and corresponding

temperature are recorded. Attainment of the steady state was assumed

when the pressure and the emf. recorded by the Honeywell recorder showed

no further change over a period of 20 minutes. The emf.'s of both

thermocouples were displayed simultaneously on the recorder. The experi-

ment was repeated three tiines. Figures 9& and 9^> show the relation

between the pressure inside the system and the crystal temperature ob-

tained in the three different runs. The temperature of the crystal at

a given pressure is reproducible to within ±1 K.
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After establishing the relation between the crystal temperature

and the pressure inside the system, the dummy diode and thermocouple A

are removed and an actual diode is mounted.



CHAPTER IV

EXPERIMENTAL RESULTS WITH THE DIODES

I. RESOLUTION AS FUNCTION OF BIAS VOLTAGE

Before using a semiconductor detector, it is important to determine

the operating voltage at which the detector gives its best resolution.

The applied bias voltage affects the resolution of the detector in two

different ways:

1. The diode leakage current (which is the current that flows through

the detector even in the absence of ionizing radiation) depends

upon the applied bias voltage. If the applied bias voltage

increases the diode leakage current will increase, thus the

noise level increases and the resolution of the detector is

degraded.

2. The diode bias voltage is related to the charge collection time

through the approximate relation given by18

T £T%V

where

T = charge collection time (sec.),

p, = carrier mobility (cm? • V."1 sec."1 ),

W = sensitive depth of detector (cm.),

V = applied voltage (volt).



Low bias voltage corresponds to a long collection time which

may cause charge loss by recombination and thus degrade the

resolution.

The optimum operating voltage was determined by cooling the detector

to minimize the diode leakage current, maintaining it at a constant tem-

perature, and then recording the spectrum from a simple gamma-ray source

for different bias voltages. The detector energy resolution is defined

as

., , . photopeak width at half maximum height (FWHM) , ._Energy resolution = «— ————-—— • ^ ^ <- x ]_QOpulse height at photopeak maximum

For a given gamma ray, the detector resolution is proportional to the full

width at half maximum, therefore the term "resolution" will be used for

the full width at half maximum height (FWHM). When the resolution was

plotted as a function of the diode applied bias voltage, it was possible to

determine the optimum operating voltage.

The diode SG-3 was cooled to 85 K., which is the lowest obtainable

temperature with the present cryostat. Then the 662-keV. gamma rays from

137Cs were recorded with the detector at different bias voltages. The

dependence of the resolution upon the applied bias voltage for diode SG-3

at 85 K. is shown in Figure 10. It is seen that the resolution was poor

when the detector was operated at low bias voltage (̂ 50 volts). This is

believed to be due to the incomplete charge collection. Also, the resolu-

tion was poor if the applied bias voltage was s200 volts, which was due

to the increase of the diode leakage current at high bias voltage. A
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plateau region was found in the range between 50 and 160 volts. It was

therefore decided to operate this detector at 125 volts.

A similar experiment was carried out for detector SG-1 using the

same gamma-ray source (137Cs), but with the detector operated at two

different temperatures, 85 K. and 105 K. As will be shown later, the

detector showed a peaking in its resolution as a function of temperature

at a temperature of about 105 K. For this reason it was decided to study

the relation between the detector resolution and its applied bias voltage

at this temperature in order to see if the optimum operating bias voltage

for the detector varied with temperature. The relation between the

detector resolution and bias voltage at the two different temperatures

is shown in Figure 11. It was found that the two curves, the one with

the detector at 85°K. and the other with the detector at 105°K., are very

similar and the plateau region does not change with temperature for this

diode. It was decided to operate this detector with a bias voltage of

lj-5 volts.

II. DIODE LEAKAGE CUREENTS

The diode leakage current is the steady current passing by the

detector in the absence of radiation. It is an important factor in the

operation of a detector because it can increase the electrical noise and

thus limit the resolution of the detector.

The leakage current has three components:

1. The drift current due to diffusion of minority carriers into the
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depletion zone under the influence of the electric field across

the detector.

2. The carrier generation current due to carriers produced by thermal

generation in the depletion layer. This depends upon the

thickness of the depletion layer and the temperature of the

diode. It increases with increasing temperature, and it is

higher for larger depletion regions.

3- The surface leakage current, which is the current that flows

through the surface layer. It depends strongly upon the nature

of the surface contamination.

The drift current is very small compared with the surface and

generation currents. Hence the diode leakage current can "be reduced by

cleaning the detector surface, thus reducing the surface current.

Cooling the detector minimizes the thermal generation currents.

Since the detector leakage current changes with temperature, it

was necessary to study the variation of the detector leakage current with

temperature.

The diode leakage currents for both diodes SG-3 and SG-1 were

measured as a function of temperature with the detectors biased at the

previously chosen operating bias voltages. The leakage current was

obtained by measuring the potential drop across a 12.084 ± 0.006 megohm

resistor in series with the diode. A d.c. microvoltmeter, Iiynamics

Instrumentation Company, Model 1̂ 62, was used for these measurements.

The diode leakage current was first measured while the detector was at

85°K. Then the gas pressure was adjusted at a value which corresponds



to a temperature of 95°K. After the temperature of the diode reached the

steady state (which is assumed by the constant emf. recorded by the

Honeywell recorder), the leakage current was measured again. Similarly,

measurements were taken at 105 > 115 > 1^5 > an<i l6o°K. The diode leakage

current as a function of temperature for diodes SG-3 and SG-1 is shown in

Figure 12. From this figure it is seen that the diode leakage current

increases as the diode temperature increases.

III. DIODE CAPACITANCE

The noise of the preamplifier is strongly dependent upon the

capacitance of the detector and its leads to the preamplifier. This

electrical noise is superimposed on the current pulses obtained from the

absorption of ionizing radiations, and causes a broadening of the pulse-

height spectrum. The effect of electrical noise in a detector-amplifier

system is explained by the following equation:18

= o.75l~2 x i°"2jY
°m

where £,_„_. is the noise in terms of the full width at half maximum of a
a wnM.

monoenergetic line in a spectrum obtained with a germanium detector

(expressed in keV.), C is the total input capacity for detector and

electronics (in picofarads), T is the amplifier integrator and differ-

entiator time constant (in p,sec.), i + i is the sum of detector leakage

and tube grid current (in nanoamperes), R is the shunt resistance in the

input circuit (in megohms), and g is the mutual conductance of the input
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tube (in inA./volt). The first term of this equation is called the tube

shot noise, the second the tube flicker noise, the third the current

noise, and the fourth the input resistance noise.

Prom this equation it is obvious that the amplifier input capac-

itance and diode leakage current affect the resolution. For this reason

the diode leakage current must be reduced by cooling the detector, and

the preamplifier input capacitance must be as low as possible in order

to reduce the electrical noise.

Since the capacitance of the detector and its connecting leads

affects the preamplifier noise and thus the energy resolution, it is

important to know its value and to see if it changes with temperature .

The diode capacitance was measured with a capacitance meter

(Rohdle and Schwarz, Model Karn 510 FNRM519/8l) while the diode was

mounted on the cold finger and connected to the signal cable. First the

zero of the capacitance meter was determined, and then the capacitance of

the connecting leads and the detector attached to the coaxial cable was

measured. Knowing the capacitance of the connecting leads and the

coaxial cable, the detector capacitance was evaluated.

The diode SG-3 had a capacitance of (ik.k ± 1.2) pf. at 85°K. and

the diode SG-1 had a capacitance of (22.0 ± l.l) pf. at the same tempera-

ture. The diode capacitances were measured with the diodes biased with

the previously determined optimum bias voltage, which is 125 volts for

diode SG-3 and 14-5 volts for diode SG-1. The relation between the diode
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capacity and its temperature is shown in Figure 13 for both diodes SG-3

and SG-1. It was found that the diode capacity does not change with

temperature.

IV. GAMMA-RAY SPECTRA AT DIFFERENT TEMPERATURES

In order to study the effect of temperature on the response of

lithium-drifted germanium gamma-ray detectors it is important to measure

accurately both the resolution for some gamma-ray sources and the detector

efficiency (which is taken as the area under the gamma-ray photopeak

stored in a certain time) as a function of the detector temperature.

The gamma-ray sources used in this experiment are listed in

Table II. All these sources are canned in stainless steel cylinders

except 22Na, which is canned in a brass cylinder. All source cans have

0.25-in. outer diameters except 60Co which has a slightly larger diameter.

The canned source was pushed with a little pressure to the end of

a hole drilled all the way through the center of a plexiglas cube of

2-in. side length. The source was kept at a fixed position inside the

block which was put on a table whose height was adjusted such that the

source center and the detector center were on the same horizontal line.

The source position was marked on that table. The distance between a

source and the detector was chosen such that the counting rate is about

500 counts per second in order to avoid problems of high counting rates

(>1000 counts per second). These problems are mainly (l) the limited

ability of the electronic system to count accurately because of its

limited resolving power, and (2) the pile-up of pulses which takes place
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TABLE II

THE GAMMA-RAY SOURCES USED IN THE EXPERIMENT AND THEIR ENERGIES

_ Gamma-ray energiesSource

60 Co 1332.48 ± 0.05

60 Co 1173.23 ± 0.04

3*Na 1274.6 ± 0.3

2<iNa 511.003 ± 0.005

137Cs 661.65 ± 0.1

ll3Sn 392.6 ± 0.8

203Hg 279.12 ± 0.05
88Y 1836.2 ± 0.3

8°Y 898 ± 0.3
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when more than one pulse occurs during a time interval of the order of

the pulse duration, resulting in unwanted counts whose amplitudes do not

represent the height of the actual pulse. Since the outer diameter of

the can containing 60 Co was slightly greater than the diameter of the

hole through the plexiglas block, the latter could not be used and this

source was put directly on the table. The geometry of the cobalt source

position was not as precisely reproducible throughout the experiment.

As mentioned above, it was desired to measure the spectrum from

sources having gamma rays with energies as high as 1333 keV. and as low

as 279 keV. In order to display all of these spectra simultaneously in

a 14-00-channel analyzer it would be necessary to have a gain of about

3.5 keV./channel, so that the highest energy gamma ray would fall within

the analyzer range (i.e., this line would be stored in channel 381).

With an expected full width at half maximum of about 8-10 keV. for these

gamma-ray lines, this gain implies that a peak extends over approximately

five channels. Such a narrow peak does not lend itself well to accurate

measurements of the peak width. It was therefore desirable to decrease

the gain by at least a factor of two in order to spread the peak over

more channels. It was found possible to cover the whole energy range in

two segments, one covering energies below about 750 keV. and the other

those above 750 keV. The gains corresponding to these ranges are

1.68 keV./channel for the lower one and 1.72 keV./channel for the upper

one.

The first series of measurements was made using diode SG-3- The

spectra from the sources listed in Table II were taken at 85 K., which
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was the lowest temperature easily attainable with this equipment. Rep-

resentative spectra are shown in Figures 1^ and 15. The detector was

then permitted to warm up by increasing the gas pressure in the jacket

surrounding the cold finger until the temperature reached 95 K. After

steady state was reached as indicated by the thermocouple attached to

the detector can, the spectra from all the sources were again taken.

This procedure was repeated so that all spectra were measured at the

temperatures listed in Table III.

It is possible, of course, that the sequence of measurement, i.e.,

the monotone increase in temperature of the diode, can give rise to a

systematic error. Therefore, the experiment was repeated starting at

l60 K., but decreasing the diode temperature to the same values as had

already been used. For this phase of the experiment only 22Na and 113Sn

sources were used, the former being representative of the high-energy

gamma rays, and the latter of the low-energy ones. The results are shown

in Figure l6. It is evident that there is no systematic change in the

result, whether the detector is warmed or cooled.

In removing the diode from the cold finger in preparation for the

next series of measurements, the skirt on the can became detached. This

made it impossible to use the diode again in this experiment because time

did not permit it to be recanned. It is for this reason that certain

measurements were carried out with diode SG-1 but not with diode SG-3'

The series of measurements described for diode SG-3 was repeated

for diode SG-1, and representative spectra obtained at 85 K. for this

diode are shown in Figures 17 and l8. Since there had been no evidence
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TABLE III

TEMPERATURES (°K.) AT WHICH THE DETECTORS
SG-3 AND SG-1 WERE OPERATED

Detector SG-3

85

95

105

115

130

1̂ 5

Detector SG-1

85

95

100

105

115

130

160
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of a dependence of the results on the order in which the temperature of

the detector was varied, the cooling sequence was eliminated from the

experiment for this diode. The results from this series of measurements,

together with the results from the SG-3 series, are presented in

Figures 19-26.

For both diodes SG-3 and SG-1, the storing time was taken to be

long enough to have a peak height of about 10,000 counts in order to

reduce the statistical error.

The single escape peak corresponding to the 8bY l836.2-keV. gamma

ray was not analyzed because of its low intensity, and the double escape

peak was not analyzed because it differs only from the 88Y 898-keV. gamma

ray by Bk keV.

It was observed that for all the different gamma-ray sources used

in the experiment the resolution of the two diodes showed a peak in the

resolution temperature curve at a temperature of about 105 K. In order

to examine the nature of this peaking, an auxiliary experiment was carried

out with detector SG-1. In this experiment the resolution of the diode

was studied as function of temperature using the i37Cs gamma ray and a

mercury pulser, which was adjusted to give pulses with height equal to

that from Cs. The result is shown in Figure 27- It was found that the

pulser line width which represents the amplifier noise increases contin-

uously and slowly as the temperature increases, probably because of the

increase in the diode leakage current. The line width of the gamma rays

exceeds that of the pulser due to statistical variations in formation and
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collection of the electron-hole pairs. The peaking in the resolution-

temperature curve occurs only on using the gamma source, which emphasizes

that this peak is a source effect.

The position of the maximum point of the gamma-ray photopeak in

the pulse-height spectrum was taken as a measure of the detector pulse

height. The detector pulse height for different gamma-ray energies was

studied as a function of temperature and the results for both diodes

SG-3 and SG-1 are shown in Figures 28, 29, 30, and 31, respectively.

It is observed that as the temperature of the detector was increased,

there is a very small increase in the pulse height. The amount of in-

crease in the pulse height due to a change in temperature of 50 K. for

both diodes and for different gamma-ray sources is given in Table IV.

From Table IV it is noticed that for both diodes SG-3 and SG-1

the pulse height from 88Y (898-keV. gamma ray) showed the largest increase

in pulse height with temperature increase.

The increase in the pulse height with temperature may be due

to (l) the increase in thermal generation currents, which may add to the

pulse height; (2) the reduction in the width of the band gap in germanium

with increasing temperature,19 which may reduce the energy necessary for

electron hole pair formation and thus, for a given gamma ray incident on

the detector at a certain temperature, will increase the detector output

pulse if the detector is used at higher temperature; or (3) the trapping

of the carriers before they are collected.11'30

The relative efficiency for the detection of the full-energy

gamma peak at different temperatures is evaluated by dividing the area
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TABLE IV

THE PERCENTAGE INCREASE IN THE PULSE HEIGHT FOR 50°K.
INCREASE IN THE DETECTOR TEMPERATURE

Source Detector SG-1 Detector SG-3
per cent per cent

2o3Hg( 279 keV. gamma ray) (1.32 ± 0.5̂ ) (2-7 ± O.k )

113Sn( 393 keV. gamma ray) (1.32 ± 0.22) (2.23 ± 0.33)

22Na( 511 keV. gamma ray) (0.88 ± 0.27) (1.60 ± 0.21)

137Cs( 662 keV. gamma ray) (0.88 ± 0.28) (1.75 ± 0.12)

88Y ( 898 keV. gamma ray) (h.06 ± 0.9l) (7.5 ± 0.32)

60Co(ll73 keV. gamma ray) (2.3̂  ± O.l6) (3.79 ± 0.35)

22Na(l275 keV. gamma ray) (1.79 ± 0.29) (3-26 ± O.l6)

60Co(l332 keV. gamma ray) (1.78 ± 0.13) (3-3 ± 0-39)
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under the peak by the analyzer storing time. For both diodes SG-3 and

SG-1 the relative efficiencies of detecting the full-energy gamma peak

with the detector at different temperatures are shown in Figures 32-37-

It is found that for all gamma-ray energies the relative efficiency of

the detector as function of temperature changes randomly by about

±8 per cent of the average value.
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CHAPTER V

CONCLUSION

The two lithium-drifted germanium detectors SG-J and SG-1 showed a

peak in the resolution versus temperature curve at about 105 K. This is

contrary to the results of Tavendale10 who did not observe such a peaking

when he studied the resolution for a germanium detector (diameter = 19 mm.,

width =3-5 mm.) on the 57Co 122-keV. gamma-ray peak as a function of

temperature.

Measurements of the leakage current, the capacitance, and the

resolution using the mercury pulser for both diodes, together with the

resolution as function of bias voltages for diode SG-1 at 85 and 105°K.,

emphasize the fact that this peaking in the resolution is an effect that

appears on using a gamma-ray source. Since the two diodes were cut from

the same germanium ingot, it is possible that these results are peculiar

to these two detectors. Repeating the experiment on different diodes

(cut from different germanium ingots), with particular care in the

temperature range where this peak appeared, will prove whether this

peaking in the resolution is or is not a characteristic of lithium-

drifted germanium gamma-ray detectors.

If the repeated measurements with different diodes show that such

a peaking in the resolution is peculiar to the two diodes SG-3 and SG-1,

one would suspect possible diffusion of "unwanted" impurities inside the

germanium crystal during the lithium-drifting process which may change

the detector properties.
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